Număr triunghiular

De la Wikipedia, enciclopedia liberă.
Salt la navigare Salt la căutare
Notă despre dezambiguizare.svg Dezambiguizare - „Formula Gaussiană” se referă aici. Dacă sunteți în căutarea formulei pentru calcularea ariei oricărui poligon, consultați formula zonei Gauss .

În matematică , un număr triunghiular este un număr poligonal care poate fi reprezentat sub forma unui triunghi , adică luat un set cu o cardinalitate (cantitate de elemente) egală cu numărul în cauză, este posibil să îi aranjăm elementele pe o grilă regulată, astfel încât să formeze un triunghi echilateral sau un triunghi isoscel , ca în figura de mai jos.

1 3 6 10 15 21
* *
* *
*
* *
* * *
*
* *
* * *
* * * *
*
* *
* * *
* * * *
* * * * *
*
* *
* * *
* * * *
* * * * *
* * * * * *

Formula Gauss

Al n-lea număr triunghiular poate fi obținut cu formula Gauss ; poartă numele matematicianului pentru o simplă chestiune de obicei istoric, dar conform canoanelor de atribuire prioritară în utilizare în matematică, având în vedere simplitatea și vechimea subiectului, ar trebui cu siguranță atribuită terților:

Din această formulă rezultă că niciun număr triunghiular pentru n mai mare de 2 nu este prim. Observând, deci, că fiecare rând al triunghiului este alcătuit dintr-un număr de elemente egal cu indicele rândului și, prin urmare, conține încă un element decât rândul anterior, este ușor de verificat dacă formula corespunde cu cea a suma primului termenii progresiei aritmetice a rațiunii 1:

De asemenea, este posibil să se obțină o justificare geometrică a formulei: apropiind un triunghi egal cu al treilea triunghi, obținem un dreptunghi de laturi Și , care este format din puncte, dublați cele ale triunghiului.

2 6 12 20 30 42
* * * * *
* * *
* * * *
* * * *
* * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

Al n-lea număr triunghiular corespunde numărului de perechi neordonate posibile extrase dintr-un set de elemente.

Demonstrație

Dovedim prin inducție pe n. Este necesar să se verifice dacă formula:

este valabil pentru n = 1 și pentru fiecare succesor al lui n , adică n +1. Primul caz, pentru n = 1, apare ușor:

Pentru n succesori este necesar să se demonstreze că:

Intr-adevar

Lista numerelor triunghiulare

Primele numere triunghiulare sunt:

1 , 3 , 6 , 10 , 15 , 21 , 28 , 36 , 45 , 55 , 66 , 78 , 91 , 105 , 120 , 136 , 153 , 171 , 190 , 210 , 231 , 253 , 276 , 300 , 325 , 351 , 378 , 406 , 435 , 465 , 496 , 528 , 561 , 595 , 630 , 666 , 703 , 741 , 780 , 820 , 861 , 903 , 946 , 990 , 1035 , 1081 , 1128 , 1176 , 1225 , 1275 , 1326 , 1378 , 1431 , 1485 , 1540 , 1596 , 1653 , 1711 , 1770 , 1830 , 1891 , 1953 , 2016 , 2080 , 2145 , 2211 , 2278 , 2346 , 2415 , 2485 , 2556 , 2628 , 2701 , 2775 , 2850 , 2926 , 3003 , 3081 , 3160 , 3240 etc.

și reprezintă succesiunea A000217 a OEIS .

Relațiile cu alte numere figurate

  • Suma a două numere triunghiulare succesive este un număr pătrat :
;
4 9 16 25 36
* *
* *
* * *
* * *
* * *
* * * *
* * * *
* * * *
* * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
  • există infinite numere triunghiulare care sunt și numere pătrate;
  • fiecare număr natural poate fi scris ca suma a cel mult trei numere triunghiulare (posibil repetate, ca în ; această proprietate a fost descoperită de Gauss în 1796 și este un caz particular al teoremei lui Fermat asupra numerelor poligonale ;
  • suma primului numerele triunghiulare este egal cu al n-lea număr tetraedric ;
  • al n-lea număr pentagonal este o treime din numărul triunghiular pentru ; orice alt număr triunghiular este un număr hexagonal ;
  • diferența dintre numărul n-m-gonal și numărul n-m (m + 1) -gonal este egală cu numărul (n-1) -th triunghiular.

Alte proprietăți

  • (suma numerelor triunghiulare);
  • (produsul numerelor triunghiulare);
  • toate numerele perfecte sunt triunghiulare;
  • reciprocele numerelor triunghiulare formează seria Mengoli înmulțită cu 2; suma lor este deci 2;
  • pătratul numărului n-triunghiular este egal cu suma primelor cuburi:
;
Acest rezultat este cunoscut sub numele de teorema lui Nicomachus .
  • numerele triunghiulare se succed întotdeauna alternând două numere impare cu două numere pare.

Test pentru numerele triunghiulare

Pentru a determina dacă numărul este triunghiular putem calcula expresia:

De sine, atunci este întreg este al m-lea număr triunghiular, altfel nu este triunghiulară.

Acest test își găsește legitimitatea în faptul că:

Demonstrația grafică este, de asemenea, foarte evidentă și simplă, atât de mult încât a fost cunoscută din cele mai vechi timpuri și, prin urmare, precede introducerea algebrei simbolice. Printre sursele acreditate care raportează teorema, se remarcă și numele de Plutarh , motiv pentru care identitatea este uneori citată ca identitate a lui Plutarh.

Elemente conexe

Alte proiecte

linkuri externe

Matematica Portalul de matematică : accesați intrările Wikipedia care se ocupă de matematică