Teorema bazei lui Hilbert

De la Wikipedia, enciclopedia liberă.
Salt la navigare Salt la căutare

În matematică , teorema bazei lui Hilbert este rezultatul algebrei comutative , care este fundamentală în studiul inelelor noetheriene . Se afirmă că dacă este Noetherian, apoi inelul polinomial este încă noetherian; recursiv, acest lucru demonstrează că , precum și fiecare - algebra generată finit, este un inel noetherian.

Teorema a fost dovedită pentru prima dată de David Hilbert în 1888 pentru orice eventualitate este un câmp și apoi generalizat în forma sa actuală de Emmy Noether . O dovadă constructivă (spre deosebire de cea a lui Hilbert) a fost dată de Paul Gordan în 1900. [1]

Rezultatul este important și în geometria algebrică , deoarece demonstrează că orice set algebric poate fi definit de un număr finit de ecuații polinomiale .

Demonstrație

Să presupunem pentru absurditatea că nu este noetherian; atunci există un ideal nu generat finit. Construim o succesiune de polinoame după cum urmează:

  • este un element al de grad minim (printre elementele );
  • este un element al de grad minim dintre elementele de .

Este coeficientul principal al , și așa să fie gradul de .

Este idealul de generat de ; atâta timp cât este noetherian, este generat finit. În special, este generat de pentru un întreg anume .

În special, poate fi scris ; considerăm polinomul

.

Pentru definiție, aparține lui ; În plus, este un polinom de grad al cărui coeficient director este . În special, polinomul

este un polinom de grad care aparține (pentru că vă aparțin amândoi acea ) dar nu a (pentru că îți aparține dar nu ). Cu toate acestea, acest lucru contrastează cu alegerea ca polinom de grad minim în : în consecință, trebuie să fie un ideal generat finit, e este un inel noetherian.

Notă

  1. ^ ( FR ) Paul Gordan, Les invariants des formes binaires , în Journal de mathématiques pure et appliquées 5 e série , vol. 6, 1900, pp. 141-156.

Bibliografie

Matematica Portalul de matematică : accesați intrările Wikipedia care se ocupă de matematică