Bremsstrahlung

De la Wikipedia, enciclopedia liberă.
Salt la navigare Salt la căutare
Bremsstrahlung produs de un electron foarte energic deviat de câmpul electric al unui nucleu atomic

Radiația Bremsstrahlung (în italiană de bremsstrahlung) radiația este radiația electromagnetică care se produce datorită accelerației sau decelerării unei sarcini de particule, [1] de obicei un electron , deviat de o altă particulă încărcată, de obicei nucleul atomic ; de fapt, presupunând că există particule încărcate într-o porțiune de materie și că un electron trece aproape cu viteză mare, traiectoria acestuia din urmă va fi deviată din cauza câmpului electric din jurul nucleului atomic. [2]

Particula în mișcare, atunci când este deviată, pierde energie cinetică și, pentru a satisface principiul conservării energiei, emite radiații sub formă de foton ; bremsstrahlung se caracterizează printr-o distribuție continuă a radiației care devine mai intensă (și se deplasează către frecvențe mai mari) cu creșterea energiei electronii de bombardare (particule frânate). Frecvența maximă a radiației este legată de energia cinetică a electronilor prin relație

și, în consecință, se cunoaște și valoarea minimă pentru lungimea de undă a radiației emise:

Mai general, radiația bremsstrahlung sau de frânare se referă la orice radiație produsă prin decelerarea unei particule încărcate, care include radiația sincrotronă , radiația ciclotronică și emisia de electroni și pozitroni în timpul decăderii beta ; totuși, termenul este adesea folosit în cel mai strict sens al radiației de frânare a electronilor de la orice sursă externă.

Descriere

Conform ecuațiilor lui Maxwell , sarcinile accelerate emit radiații electromagnetice : în special, atunci când un electron se ciocnește cu un material, suferă o împrăștiere prin câmpul Coulomb al unui nucleu atomic , atunci poți crede că este „frânat”. Dacă energia electronii bombardanti este suficient de mare, radiația emisă este localizată în regiunea razelor X ale spectrului electromagnetic.

Pierderea de energie pentru bremsstrahlung este semnificativă - adică domină în ceea ce privește procesele de ionizare și excitație ale nucleului - pentru electroni foarte energici (în ordinea a sute de MeV în aer și apă și zeci de MeV în materialele grele precum plumbul sau fierul). Pierderea medie de energie pe unitate de deplasare poate fi calculată aproximativ și se dovedește

unde este este numărul de atomi pe unitate de volum, Z este numărul atomic al materialului, Este constanta structurii fine si este masa electronului. Prin urmare, se poate observa că pentru particulele cu masă mai mare pierderea de energie este mai mică. Termenul logaritmic se datorează ecranării parțiale a sarcinii nucleare de către electroni atomici. Tratamentul formal prin mecanica cuantică a fost efectuat de Hans Bethe și Walther Heitler în 1934 .

Liniile unice sunt, de asemenea, suprapuse acestui spectru continuu, deoarece electronii care bombardează pot scoate electroni din straturile atomice cele mai interioare ale țintei, iar umplerea rapidă a acestor goluri de către electroni din straturile superioare produce raze X caracteristice pentru fiecare atom (numită „fluorescență”) „”). Alternativ, se poate întâmpla ca energia relativă la diferența de energie dintre cele două orbite să cauzeze, după decăderea electronică la niveluri mai mici de energie, expulzarea în continuare a electronilor cei mai exteriori. Acest fenomen este „ efectul Auger .

Acest efect se regăsește și în unele obiecte din cerul adânc , în care emisia este de obicei asociată cu gaze fierbinți rarefiați din grupurile de galaxii .

Particule în vid

O particulă încărcată accelerată, în vid, radiază energie, așa cum este descris de formula Larmor (și generalizările sale relativiste):

unde este este puterea, sarcina particulei, accelerarea ei e viteza luminii în vid.

Deși termenul bremsstrahlung este de obicei rezervat particulelor încărcate accelerate în prezența materiei și nu în vid, legile sunt similare.

Puterea totală radiată poate fi derivată din formula relativistă

unde este , in care este viteza particulei, Este factorul Lorentz și este derivata în timp a . Valorificarea identității [3] :

poți scrie expresia lui în forma echivalentă:

În cazul particular în care vectorul vitezei este paralel cu accelerația particulei, ecuația de mai sus poate fi simplificată în continuare ca

în care este plasat .

Dacă, pe de altă parte, avem că accelerația este perpendiculară pe viteză, adică , puterea totală radiată este redusă la

De asemenea, din raport , este clar că puterea totală radiată, în termeni de tendință în raport cu masa, merge la fel sau Iată de ce electronii pierd energie prin bremsstrahlung mult mai repede decât alte particule mai grele (cum ar fi muoni , protoni , particule alfa ): de exemplu, un electron pierde energie din cauza bremsstrahlung la o rată de de ori mai mare decât un proton.

Puterea totală radiată poate fi exprimată și în funcție de unghiul solid ; mai precis, dacă este indicat cu unghiul solid infinitesimal și cu vectorul direcționat de la particulă către observator, atunci există următoarea relație:

În cazul în care viteza este paralelă cu accelerația (de exemplu într-o mișcare rectilinie) poate fi simplificată ca

unde este este unghiul format între vectorul de accelerație și direcția de observare.

Bremsstrahlung termică

Într-o plasmă , electronii liberi se ciocnesc constant cu ionii, producând radiații bremsstrahlung; o discuție detaliată despre aceasta se datorează lui Bekefi.

Dacă avem în vedere o plasmă uniformă cu electroni termici distribuiți în funcție de distribuția Maxwell-Boltzmann la temperatură , conform modelului lui Bekefi, densitatea spectrală a puterii radiate per bremsstrahlung (adică puterea pe interval de frecvență unghiulară, integrată pe un unghi solid total de , și în ambele polarizări) pot fi obținute de la:

unde este este frecvența plasmei electronice, este frecvența fotonului și, în cele din urmă și sunt densitatea numărului de electroni și, respectiv, de ioni.

Al doilea termen între paranteze este indicele de refracție al unei unde de lumină într-o plasmă și arată modul în care emisia este suprimată semnificativ în cazul în care : În acest caz, unda de lumină se spune evanescentă, iar condiția de tăiere pentru o undă de lumină într-o plasmă este precisă .

Rezultă că trebuie să ne restrângem la întâmplare ; funcția specială Este un „ exponențial integral și cantitatea este adimensională este dat de

unde este este un număr de undă maxim (sau forfecare), rezultat din coliziuni binare și poate varia în funcție de specia ionică; aproximativ unul are

cand (tipic în plasmele nu prea reci), unde este energia Hartree (unități de energie atomică) și Este lungimea de undă a undei termice De Broglie .

Altfel, avem asta , unde este este distanța clasică de apropiere.

Cu toate acestea, pentru situații obișnuite, și obținem:

Ecuația lui este totuși o formulă aproximativă, deoarece neglijează emisiile care apar pentru puțin mai mare decât .

În măsura în care , putem aproxima funcția exponențială integrală ca

in care este Euler-Mascheroni constantă , aplicant în analiză și în teoria numerelor, definită ca limita diferenței dintre seria armonică și logaritmul natural:

unde este Este funcția întregii părți .

Pentru termenul logaritmic este negativ, ceea ce face ca aproximarea să fie inadecvată; Bekefi a dat expresii corecte pentru termenul logaritmic care corespund calculelor detaliate asupra coliziunii binare.

Puterea totală radiată, integrată pe toate frecvențele, este:

cu

fiind ; avem deci , și scade cu , rămânând întotdeauna pozitiv. Pentru primesti:

Pentru temperaturi extrem de ridicate, există corecții relativiste la ecuația anterioară, adică termeni suplimentari de ordinul lui .

Corecții relativiste pentru emisia unui foton a prin impactul unui electron asupra unui proton.

Surse de bremsstrahlung

Tub cu raze X

Într-un tub cu raze X , electronii sunt accelerați de un câmp electric și „trageți” împotriva unei piese metalice numite „țintă”. Razele X sunt emise ca radiații cauzate de decelerarea electronilor din metal. [4]

Ieșirea spectrului este un spectru continuu de raze X, cu vârfuri suplimentare sunt situate la anumite valori de energie.

Spectrul de raze X emis de un tub de raze X cu țintă de rodiu, la cca .

Continuitatea spectrului se datorează bremsstrahlung, în timp ce vârfurile sunt raze X caracteristice asociate cu atomii țintă; În acest context, bremsstrahlung este numit și raze X continue.

Forma spectrului celei de-a doua figuri este descrisă în grosime de legea lui Kramer: este de obicei dată ca o distribuție a intensității (numărul de fotoni) împotriva lungimii de undă a radiației emise :

unde este este o constantă proporțională cu numărul atomic al elementului țintă și este lungimea de undă a undei minime dată de legea lui Duane-Hunt [5] : frecvența maximă a radiației emise, în urma aplicării unei diferențe de potențial , este dat de

la care corespunde lungimea de undă minimă:

Procesul de emisie a razelor X de către electronii în mișcare este cunoscut și ca efect fotoelectric invers.

Decăderea beta

Particulele beta au uneori o radiație de spectru continuu slabă datorită bremsstrahlung; totuși, în acest caz este o radiație secundară, în sensul că este produsă ca urmare a încetinirii (sau opririi) radiației primare.

Acest lucru este similar cu razele X produse prin bombardarea țintelor metalice cu electroni în generatoarele de raze X, cu excepția faptului că aici radiația este produsă de electroni de mare viteză din radiația beta.

„Bremsstrahlungul intern” apare din crearea unui electron și pierderea acestuia de energie, datorită câmpului electric puternic din regiunea de descompunere, atunci când acesta părăsește nucleul.

În emisia de electroni și pozitroni prin dezintegrarea beta, energia fotonului provine din perechea electron-nucleon, spectrul bremsstrahlung scăzând pe măsură ce energia particulei beta crește.

În captarea electronilor, energia merge în detrimentul neutrino-ului , iar spectrul este maxim la aproximativ o treime din energia normală, reducând energia electromagnetică la energia neutrino normală.

În această situație, bremsstrahlung este emis chiar dacă nu sunt emise particule încărcate; o astfel de radiație poate fi la o frecvență similară cu radiația gamma , deși nu prezintă nicio gamă de descompunere a liniei spectrale ascuțite.

Bremsstrahlungul „intern” este în contrast cu bremsstrahlungul „extern”, cauzat de impactul electronilor asupra nucleului, care provin din exterior, adică emis de un alt nucleu.

În unele cazuri, de exemplu pentru fosfor, radiația bremsstrahlung produsă prin protejarea radiației beta cu materiale dense, cum ar fi plumbul, este în sine periculoasă: în aceste situații, ecranarea trebuie realizată cu materiale cu densitate redusă, cum ar fi plexiglas, plastic, lemn sau apă; deoarece numărul atomic este mai mic, rezultă că intensitatea bremsstrahlung este considerabil redusă, chiar dacă este necesară o grosime mai mare de ecranare pentru a opri electronii (radiații beta).

Descriere conform mecanicii cuantice

Descrierea completă este opera lui Bethe și Heitler, care, presupunând unde plane pentru electronii care împrăștie nucleul unui atom, au trasat o secțiune transversală care acoperă geometria completă a acestui proces, în funcție de frecvența fotonului emis. ; secțiunea în cauză evidențiază simetria mecanicii cuantice pentru producția de perechi , iar diferențialul său față de ordinul patru este [6] :

in care:

este numărul atomic
Este constanta structurii fine
este constanta Planck redusa
este viteza luminii în vid
Este impulsul electronului
Și sunt direcțiile fotonilor emiși și ai electronilor împrăștiați și în care este momentul fotonului
este unghiul format între planuri Și

Diferențialele sunt date de

Energie kinetică electronului în starea inițială și finală este legat de energia sa totală sau impulsul său conform raportului

Din conservarea energiei se obține

unde este este energia fotonului.

Ultima cantitate de descris este : Valoarea absolută a fotonului virtual dintre nucleu și electron este:

Intervalul de validitate este dat de „ Aproximare născută :

unde relația trebuie satisfăcută pentru viteza electronului în stările inițiale și finale.

Pentru aplicații practice (de exemplu, metodele Monte Carlo) poate fi interesant să evidențiem relația dintre frecvență a fotonului emis și a unghiului dintre acest foton și electronul incident. Kohn și Ebert au integrat de Bethe și Heitler în comparație cu Și , primind

unde ele pot fi exprimate în funcție de constante

nel modo seguente:

Note

  1. ^ ( EN ) Thermopedia, "Bremsstrahlung" Archiviato il 13 febbraio 2018 in Internet Archive .
  2. ^ La Fisica di Feynman, vol. 1 , Cap. 34-5
  3. ^ Jackson, Classical Electrodynamics , Cap. 14.2-3
  4. ^ C. Mencuccini, V. Silvestrini, Fisica II, Elettromagnetismo e Ottica , Cap. IX.8
  5. ^ William Duane and Franklin L. Hunt, On X-Ray Wave-Lengths , in Physical Review , vol. 6, 1915, pp. 166–172, Bibcode : 1915PhRv....6..166. , DOI : 10.1103/PhysRev.6.166 .
  6. ^ G. Baur and A. Leuschner., Bethe-Heitler cross-section for very high photon energies and large muon scattering angles , in European Physics Journal , vol. 8, pp. 631-635, DOI : 10.1007/s100529900028 .

Bibliografia

Altri progetti

Collegamenti esterni

Controllo di autorità LCCN ( EN ) sh85016730 · GND ( DE ) 4142023-8 · BNF ( FR ) cb122681514 (data) · NDL ( EN , JA ) 00570284